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The axisymmekic problem of mot&on of two fluid spheres in a viscous medi- 
um is considered in the StokeJ approximation. An asymptotic soIution is 
derived for the case of a small gap between the spheres. The case when one 
of the spherea is solid is also ccasidcred. 

‘I% aXiqwmetric prabletm of siew motion of two spherical drops in a viscous 
medium was so&d in cl]. In ~t~~~~, which gm+u~~~ ~~~~~ pm- 

ted in C2 -51, the hydrodynamic forces are represented by infinite series. s&e a& 
series are slowly convergent, they are unsuitable for numerical computation when the 
gap between spheres is small, Here we derive an asymptotic solution which is also 
appIicable in the case of fluid spheres of which one is contained inside the other. 
This is of interest in the study of motion of a sphere containing a gas bubble. 

The obtained solution is substantially different from the asymptotic sohttion for 
solid spheres [6]. 

l. Statement of the problem. Letusconsidertwofluid spheres 
of radius a and It moving at velocities V, and Vb , respectively. Two possible 
relative positions of spheres are shown in Fig* 1. The Reynolds number and the relat- 
ive velocities of the spheres are assumed small, and the problem is analyzed in the 
Stokes approximation. 

Impermeability of contact surfaces to the fluid, and the continuity of velocity 
and tangent skess at the sphere surfaces are taken as the boundary conditions. We 
assume the surface tension at interfaces of liquids [in the sphere and outside it] to be 
fairly high, so that it is possible to neglect any deviation of the drop shaI= from the 
spherical, and omit the consideration of continuity of normal skesses. 

Owing to the problem line- 
arity the force acting ona 
sphere of radius u can in the 
Stokes approximation be rep- 
resented as 

F, = - Garyma 1111, Va - 

vb) + hvbI 

Whensphere a is located 
inside sphere b (see Fig. 1, a), 
the force acting on the external 

a b sphere is of the form 

Fig. 1 
F, = - 6npeb fA,, 0’, - 

V,) + A,,vbl 

1046 



Intwactim between dropa at low bynoti numben 1047 

where ir, and CC are the visco&ies of fluids in regions m and e (see Fig. 11, and 
subwripts m , C, and 5 denote quanti!Ses in regions shown in that figure. 

Using the reciprocity theorem [7] and taking into account boundary coudiffous it 
is possible to show that 

A, = ab-“~ps-~Al~ (1.1) 
Whea the qheres are taqpnt the quantities A,, A=, and A, remain finite, 

which fop A, follows form (I. U. The limit value of 4~ was deterrrdued in &8,9] 
fop solid aad fluid @wea in case b . . 

The aim of the present investigation is to determine the asymptotics of 41 when 
the gap between the sphere surfaces is amalL 

2. Solution. Uaingtheb@he&alsystemofcoordinates 

Ckri 
* 

&= chq-p ’ 
p=.*, p-cosg (2.1) 

it is possible to have the sphere of radius a to be thecoordinate surface tl = coust = 

q1 > 0 aud the sphere of radius b to represent the coordinate surface q = 

con& = 7)o. Tht quantities c, ?hl and go are determined by formulas 

ch*= (1+e)(t-k)---es/Z 
1-k-ke t shtlo==kshq, c=ushq, c&2) 

where ea isthegapbetweenspheres, k=+= j=a/ b, andthemlnusdgnrelatesto 
the position of spheres shown in Fig. 1, b. 

The stream function was obtained in p] in the case of V, = 0 for all flaw regions 
intheform OD 

(2.3) 

(Pn’R h) = En ch (n - l/d q + F, sh (n - I/,) q + 
Gn ch tn + %) q + ffn sh (n + v,) q 

%a6 ca = Cm exp (n - ‘& 
cprb’ h) = & =p i- (n 

rl + D, =p (n + */s”t’r) q 
- %I Ml + &a exp b- (n + */r) ~1 

where vu is the projection of velocity Vu an the negative axis e and Q,,(p) is 

the Gtge?~bauer potyuomial related to the Legendre polynomials by formula 

Q= W= f%+1 (P) - P,_~ wi I (2n + i) 

R,, (q) = -p I- fn + %) ?I _ eV [- (n - ‘fg) q] 
l 2n+3 2n--1 

(2.5) 
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When V&=0 f~~~(2.3)-(2.5~~a~v~d~~ a, ~~hju~ff~ 
the use of a common designation of flow regic@s in cases u and b and makes poafb- 
le the investigation of asymptotics of AI, for any relative posi&oa of spheres. 

Let us determine the inner expansion for the stream function v”, which is valid 
in the reg&S of small gap between the apke surfaces, since that a@m de&rmtnes the 
sfngularput of &I. Using (2.5) and the W two of formUs (2.3) we slim&ate 
from equaliticr (2.4) iimctiom qn* (q) and qne (q) and obtaiu for q,,= (q) tfte 
closed system of boluldsry Conditl~ 

The tangency case comqonds to the passing to limft 

'lo - 0, q1 - 0 (2.7) 

where sh qa/sh,ql==k is&cm% ltfoUowsfrom(2.7)that Q/W== k-j-k(i- 

wrl?/6+Ohl% Weintroducethevariable a==~/% andnotethattbe 
~m~co~~~~to oW 1 and f--&cl1. WeffxtttSvaatSrof b, n,&, 
and n, t pass to limit by applying (2.7) to (2.5) and (2.61, and to the differential 
equation fa (P,,~ (q) implied by the second of equalit& (2.31, and obtain 

qnm (11) = %I (0) + %Bn ta+ %%a (4 + 0 elf) 
(2.8) 

a,(a)=- 
4(a-k) 

~~-1){~+3)(~-~) ’ 

@, @) = w + 1) t&* + &a* + Cl5 + 4) 
(2n - 1) (2n + 3) 

where Aj, Bj, Cj, and Dj (i = 1,2,3) depend 011 24, I,, and k . The singular 
part of AI1 is determined by coefficients AI, As, and A, 

The first two terms of the inner expar@on OP tpm can be dim&y &aimd by sub- 
stftuting (2.8) into the series (2.3). The third term is determined by, first, summating 

seriu (2.3) by parts and then expressing the Gegenbauu polynumtab fn tezms of LegeAre 
poQnofak As t?w result, we have 

Y2= 
i(i+k)(a-lHl+p) _ (naa2+Bzcr2+Cpa+n,)jl+IL) + 

12(1 -@(I -p) 4 (I- PP 
(.4#+&,~2+C~3+ &)(I f~)I2~-33)_3a”(o--k)(l+1~) 

4 0 - Ff” 8(1--1tYt1 --k) 
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Z’(p) = 6(1 -II)+’ p, (PI 
(2n - 3)(2n+1)(2n+S) 

n-0 

The last of these formulas implies that when 1~ -+ + i 

T (II) = - l/Z (1 - &/’ + 0 ([1 - &‘* In (1 - p)l (2.11) 

It will be seen from (2.10) and (2.11) that the validity of the inner expansion 
is violated when I - P - ql*. We introduce the variable ‘c = PCEGG 
noting that in the fir& approximation u and t are tangent -spherical coordinates 

0 / a = 2a / (0% + ta), p I a = 22 / (era + ta) 

Using the general solution of the Stokes equation for stream function in coordinat- 
es (3, z dexived in [S, 81 and satisfying boundary conditions, it is posaibie to formulate 
the first term of the external expansion of rp “, and then using (2.11) to show that the 
external expansion merges with the i&mat 

The force acting on a sphere of radius a is obtained, in conformity with [Z], in 
the form 

(2.12) 

where integration is carried out along the arc of the half of the sphere meridian cron 
section, n is the direction of the outer normal, and the Stokec operator Es in bis- 
pherical coordinates is 

(2.13) 

St follows from (2.10) -(2.l3) that the contribution of the inner region to coefflc- 
ieH -Gi is 

(2.14) 

The value of PO lies in the region of overlap of the external and inner expansions. 
Terms which tend to zero when q1 -+ 0 are omitted. From (2.10) we have 

? 

I (I-p)T(p)dp=- 3+gz (2.15) 

Using (2. lo), (2.11). and (2.15) we represent (2.14) in the form 

3/32~x~A~q~-~ = I’/, (1 - k)‘l -I- VI (A, -t Aa)1 Iln (V / 2) -l-in (W - 
A&/ 2 + 0 h-l (1 - clo)sfl In (1 - po)l + 0 U) 

It should be noted that the texrns containing Q cancel out in the contribution 
of the external region to coe#icient All and that buides these terms the contribut- 
ion of the xextemal region is only of order 0 (i). 

The final result, with allowance for (2.2) and (2.9), is of the form 
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All = (l/sz) n2 1/Z(i - i-i),” (& + 113 emxir - l/8 (1 - k)-’ [I + (lil, - ?$- 

A**) / 31 In PJ + 0 (f 1 

(2.16) 

Formula (2.16) was obtained on the agumption that 8 - 0 when Xi and 1, 
have fIxed finite values, aad it showa that the region of the dedved solution applicab- 
ility is bounded by the condition 

max(hi. &)e(/Sl Ins/)-l (2.17) 

which makes it fmporible to paa from (2.16) to the asymptotic farnub for solid 
bodies 161. 

The quantity Au was determined in Cl] by the sum of a slowly convergent series 
far smaIl e. l&&b .of aum@ricaI caiu&&ais by farm&a in [l] for k = a/, are 
compared be&w with the valuer of A+ 11 determtns$ by the aaymptutic foalapllaa (2.16) 

%- L, e A** Cn:r. - &,)/Au 

?T 2*/W 2.565.10 1.8.W’ 

: 
2.10~’ 2.967.10s 1.8./O-J 
2.10-4 3.oi6.W 1.9.1~* 

3 2*/O+ 3.890.10 2.1*lO-1 
3 2-W 5.019*1@ 2.O.foa 
3 2.1P 5.206.10s 2.0.101 

The described here method can be used for Lnvcrtigating the case When Once Of the 

sphucr, is solid. Fun~tfaa a,, (e) def&ed in (2.8) ir then a tftinl poem poQQodaL 
hence it is necessary to add to (2.14) the expreadon 

1 -- 
6 

-1 

( 2.18) 

All derivativea in (2.18) and (2.14) are determined for o=l. otherwise this 

case does not greatly differ from the aae con&Wed earlier. When h, = 00 we 

have 

(2.19) 

If l-k- 1 is assumed, then, as implied by (2.19), the derived solutt~n 

is valid for Xr 4 (6 I In e 11-l. 
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