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The axisymmetric problem of motion of two fluid spheres in a viscous medi-
um is considered in the Stokes approximation. An asymptotic solution is
derived for the case of a smali gap between the spheres. The case when one
of the spheres is solid is also considered,

The axisymmetric problem of slow motion of two spherical drops in a viscous
medium was solved in [1], Iu that solution, which generalizes investigations presen-
ted in [2 —5], the hydrodynamic forces are represented by infinite series, Since these
series are slowly convergent, they are unsuitable for numerical computation when the
gap between spheres is small, Here we derive an asymptotic solution which is also
applicable in the case of fluid spheres of which one is contained inside the other,
This is of interest in the study of motion of a sphere containing a gas bubble,

The obtained solution is substantially different from the asymptotic solution for
solid spheres [6].

1, Statement of the problem, Letusconsidertwo fluid spheres
of radius ¢ and » moving at velocities V, and V, , respectively. Two possible
relative positions of spheres are shown in Fig, 1. The Reynolds number and the relat-
ive velocities of the spheres are assumed small, and the problem is analyzed in the
Stokes approximation,

Impermeability of contact surfaces to the fluid, and the continuity of velocity
and tangent stress at the sphere surfaces are taken as the boundary conditions, We
assume the surface tension at interfaces of liquids {in the sphere and outside it] to be
fairly high, so that it is possible to neglect any deviation of the drop shape from the

spherical, and omit the consideration of continuity of normal stresses.
z z Owing to the problem line-

¢ P arity the force acting ona
sphere of radius a can in the
/ m P Stokes approximation be rep-
resented as
Fq = — 6apma [Ay (Vg —
‘ 2 Vi) + AgpVyl
¢ Whensphere a is located
£ inside sphere b (see Fig.1,2),
the force acting on the exteral
a b sphere is of the form
Fp = — 6njed [Agy (Vo —

Vi) T AzaVel

Fig.1
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where #m and K. are the viscosities of fluids in regions m and ¢ (see Fig, 1), and
subscripts m , ¢, and i denote quantities in regions shown in that figure.

Using the reciprocity theorem [7] and taking into account boundary conditions it

is possible to show that .
An = ot pmpe Ay (L1

When the spheres are tangent the quantities Ay, Ay, and A, remain finite,
which for Ay follows form (1.1). The limit value of Ay was determined in [1,8, 8]
for solid and fluid spheres in case b .

The aim of the present investigation is to determine the asymptotics of A;; when
the gap between the sphere surfaces is small.

2 Solution, Using the bispherical system of coordinates

_ ¢shy _ _¢csin§ = 08
Z—m’ m» |4 5 (2.1)

it is possible to have the sphere of radinus a to be the coordinate surface W = const =
m >0 and the sphere of radius & to represent the coordinate surface 4=
const = 7. The quantities ¢, n;, and 1y, are determined by formulas

(A+ey(1—k)—ke2/2
1~k — ke '

chyy = shyp=Fkshn, c=ashy, (2.2

where &a is the gap between spheres, k = -4 a/ b, and the minus sign relates to
the position of spheres shown in Fig, 1,b.

The stream function was obtained in [1] in the case of V, = ¢ for all flow regions
in the form

¥ =20 (=) Y 0+ 000 QW) (2.3)

Na=x]

Pa™ () = Ench (n —Yy) n + Fpsh (n — Yy q +
Gnch(n+ %)+ Hush (n+ %) q

9nf (1) = Cy exp (n — ;) 0 + Dy 6xp ( + 3)
Pnt () = 4, exp [— (n — Yy) )] + B, exp[— (n < 3/5) n)

where Va is the projection of velocity V, on the negative axis z and @, (p) is
the Gegenbauer polynomial related to the Legendre polynomials by formula
On () = [Pyyy () — Py W1/ 20+ 1)
Investigations fn [1] had shown that the boundary conditions assume the form

N=1e ™ =0n°=0, dp.™/dn = dps®/dy (2.9)
Ppe™ [ dn? = eyt / dn?, A, = be/ Bm

N =1, ¢n™ =@l = R,, dp,™/dn=dp,t/dy
Pep™ / dn? — AydPept/ dn® = (1 — A;) PR/ dn®, Ay = pi/ pm

=OXP[—(r<43p)n] __ exp[~—(n—1
R, (n) =2 . 3 x 2:’:_1/:)'0] (2.5)
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When V, = 0 formulas (2, 3)— (2, 5) are alto valid in case o , which justifies
the use of a common designation of flow regions in cases a and & and makes possib-
le the investigation of asymptotics of A;; for any relative position of spheres,

Let us determine the inner expansion for the stream function w™, which {s valid
in the region of small gap between the sphere surfaces, since that region determines the
singular part of Ay Using (2. 5) and the last two of formulas (2, 3) we eliminate
from equalities (2.4) functions ¢,i(n) and @,°(n) and obtain for @n™(n) the
closed system of boundary conditions

N =10 @™ =0, g™/ dn? = A, (2n + 1) dpa™ / dn

N=1, ™ =Ry, Pe™/dp-+1;(2n+ 1) dpp™ / dn ==
@Ry [/ dy + ;i (2n 4 1) dRa [ dn

The tangency case comesponds to the passing fo limit
To—0m—0 2.m

where sh 7o /sh,n; =k is fixed. It follows from (2.7) that ne/y = k+ k(1 —
BYnt/ 64 O (mt), Weintroduce the variable o =1 /1n, and note that the
inner region corresponds to o ~ 1 and 1 — g ~ 1, We fix the values of s, n, A,
and 3, , pass to limit by applying (2.7) to (2.5) and (2. 6), and to the differential
equation for @™ (1) implied by the second of equalities (2,3), and obtain

(2.6)

Pp™ () = @a (0) + MPn (0) + MmP¥n (0) + O () (2.8)
o ()= e A5—H) ’
n (2n—~1)(25+3}(i—~k)
(G)=(2n+i)@163+?_1§f+016+31)
Bn 2n—1)(2n +3)
. 2k(1+k){1—o 3.1 Bad 4 C. D.
Yp (6) = ST—RH =D&+ + Ay0® -+ Byo? + CsS + Dyt

(27 + 1)2 (445° + Bys?+ Cys + Dy)
~ @n—1)(2n+3)

where A; By, C;, and D;(f=1,2,3) dependon iy, A, and k. The singular
part of A,, is determined by coefficients A;, A and 4,

ke U SR ks et L R L
TU—FRR B —5 A — k)

.4133

The first two terms of the inner expansion of ¥™ can be directly obtained by sub-
stituting (2, 8) into the series (2,3). The third term is determined by, first, summating
series (2, 3) by parts and then expressing the Gegenbauer polynomials in terms of Legeadre
polynomials, As the result, we have

om a Vaed [w, (0, ) + m,7; {0, B} -+ ﬂf‘!@", (o, p) + 0 )] (2. 10)
o S—REEB | w2 (4,68 + Byt + O+ DO T ()

T I =K d —p) '
g EULRE=D(+p) (Ao + B+ O+ DU+ o

AT T RI—RHU—p) F(1—pp

A58 - Bgs? - Cys -+ D (i+u)(2u——3)__363(o-k)(1+p)
et ﬁ-+&£t£3 81— (1 —4)
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. RN Py ()
Tp)=6(1—n L(Zn—3)(2n+l)(2"+5)
n=0

The last of these formulas implies that when p — 41
T=—Y01—w"r+0@01—p*ln{1 —pl (2.11)

It will be seen from (2, 10) and (2. 11) that the validity of the inner expansion
is violated when 1 — p ~ m,%. We introduce the  variable t = 0,71y 2 (1 — p),
noting that in the first approximation ¢ and v are tangent —spherical coordinates

z2/a=20/(0*4+1?), p/a=2t/(0®+ 1%

Using the general solution of the Stokes equation for stream function in coordinat-
es o, T derived in [6, 8] and satisfying boundary conditions, it is possible to formulate
the first term of the external expansion of ¥™,and then using (2. 11) to show that the
extemnal expansion merges with the internal,

The force acting on a sphere of radius a is obtained, in conformity with [2], in
the form

5 0 (BT
Fﬁﬂh&?’;;( = )ds (2.12)
where integration is camied out along the arc of the half of the sphere meridian cross

section, » is the direction of the outer normal, and the Stokes operator E* in bis-
pherical coordinates is

E!==(°h" p)[ ((chn "')5')"‘(1'""2)5‘((01"' u)a—)] (2.13)

It follows from (2, 10) —(2, 13) that the contribution of the inner region to coeffic~
ient Ay is

_ . Y,
.._._S dp [m‘(i— o+ SR NS (2.14)

u—m;ﬁ(u—- )35—‘;}‘;)]

The value of Ro lies in the region of overlap of the extemal and inner expansions,
Terms which tend to zero when 1, — 0  are omitted, From (2, 10) we have

1

\ t—w 7= VT (215
~1

Using (2, 10), (2.11), and (2, 15) we represent (2, 14) in the form

8/32n2 4y = [Yy (1 — B) + Y3 (Ag + 49)] [In (% / 2) +ln (v¥)] —
AyTo/ 24+ 0 Im™ (1 — polPIn (1 — po)l + 0 (1)

It should be noted that the terms containing v, cancel out in the contribution
of the external region to coefficient A;; and that besides these terms the contribut-
ion of the x extemal region is only of order O (1).

The final result, with allowance for (2.2) and (2, 9), is of the form
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Ay =) VEIUL =8 A +hg) e =13 (1 = B + Mhe — ME— (2, 16)
A2 /3]lne+0(1)

Formula (2, 16) was obtained on the assumption that e—0 when A; and A4,
have fixed finite values, and it shows that the region of the derived solution applicab-
ility is bounded by the condition

max (Ai, Ae)<€(Vellng|)t (2.17)

which makes it impossible to pass from (2, 16) to the asymptotic formula for solid
bodies [6].

The quantity A;, was determined in [1] by the sum of a slowly convergent series
for small 2. Results .of numerical calculations by formulas in [1] for k = 1/, are
compared below with the values of A*; determined by the asymptotic formmlas (2, 16)

A== g e Asg (A*n ~ Asg)/ Ann
Y3 2.102 2.585.10 1.8.1071
Y3 21074 2.967.10° 1.8.102
V3 2.10° 3.016.10% 1.9-10™3

3 2.10~2 3.890.10 2.1-10"1

3 2-10~¢ 5.019.102 2.0.-102

3 2.10™¢ 5.206-108 2.0.10

The described here method can be used for investigating the case when one of the
spheres is solid, Function an (0) defined in (2, 8) is then a third power polynomial,
hence it is necessary to add to (2, 14) the expression

Lo
A C (A=Y, | 0, 1 P, (2. 18)
6 Sdp'[ 13 95 +536’+2.533-]

All derivatives in (2. 18) and (2, 14) are determined for ¢ =1 . Otherwise this
case does not greatly differ from the one considered earlier, When A, =oco we

have

- 1 9BY2 s =y

3AE gk — 18k -4
[16(1—-1:) 20(1 — k) ]l”'*’o“)

If {—%~1 isasumed, then, as implied by (2. 19), the derived solution
is valid for A; <€ (Ve|lne D

(2.19)
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